DUAL Lp AFFINE ISOPERIMETRIC INEQUALITIES

نویسنده

  • SI LIN
چکیده

Corresponding to each convex (or more general) subset of n-dimensional Euclidean space, Rn, there is a unique ellipsoid with the following property. The moment of inertia of the ellipsoid and the moment of inertia of the convex set are the same about every 1-dimensional subspace of Rn. This ellipsoid is called the Legendre ellipsoid of the convex set. The Legendre ellipsoid is a well-known concept from classical mechanics. For a star-shaped (about the origin) set K ⊂Rn, it is easy to see that its Legendre ellipsoid, usually denoted by Γ2K , is an object of the dual Brunn-Minkowski theory. In [6], the dual analog of the classical Legendre ellipsoid in the Brunn-Minkowski theory is introduced. For a convex body (i.e., a compact, convex subset with nonempty interior) K in Rn, its dual analog of Γ2K is dented by Γ−2K . More in general, in [8], the Lp analog of centroid bodies, ΓpK for a convex body K also being investigated, and, in [7], the dual of ΓpK , Γ−pK are defined. The main aim of this article is to establish some affine inequalities for Γ−pK , which are dual analog of the main results in [5, 8]. The techniques developed by Lutwak, Yang, and Zhang play a critical role throughout our paper. Let Sn−1 denote the unit sphere in Rn. Let B denote the unit ball (the convex hull of Sn−1) in Rn, and write ωn for the n-dimensional volume of B. Note that ωn = π n/2 Γ(1+n/2) (1.1)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability results for some geometric inequalities and their functional versions ∗

The Blaschke Santaló inequality and the Lp affine isoperimetric inequalities are major inequalities in convex geometry and they have a wide range of applications. Functional versions of the Blaschke Santaló inequality have been established over the years through many contributions. More recently and ongoing, such functional versions have been established for the Lp affine isoperimetric inequali...

متن کامل

New L P Affine Isoperimetric Inequalities *

We prove new Lp affine isoperimetric inequalities for all p ∈ [−∞, 1). We establish, for all p 6= −n, a duality formula which shows that Lp affine surface area of a convex body K equals Ln2 p affine surface area of the polar body K◦.

متن کامل

SHARP AFFINE Lp SOBOLEV INEQUALITIES

In this paper we prove a sharp affine Lp Sobolev inequality for functions on R. The new inequality is significantly stronger than (and directly implies) the classical sharp Lp Sobolev inequality of Aubin [A2] and Talenti [T], even though it uses only the vector space structure and standard Lebesgue measure on R. For the new inequality, no inner product, norm, or conformal structure is needed at...

متن کامل

Inequalities for mixed p - affine surface area ∗

We prove new Alexandrov-Fenchel type inequalities and new affine isoperimetric inequalities for mixed p-affine surface areas. We introduce a new class of bodies, the illumination surface bodies, and establish some of their properties. We show, for instance, that they are not necessarily convex. We give geometric interpretations of Lp affine surface areas, mixed p-affine surface areas and other ...

متن کامل

Functional versions of L p - affine surface area and entropy inequalities . ∗

In contemporary convex geometry, the rapidly developing Lp-Brunn Minkowski theory is a modern analogue of the classical Brunn Minkowski theory. A cornerstone of this theory is the Lp-affine surface area for convex bodies. Here, we introduce a functional form of this concept, for log concave and s-concave functions. We show that the new functional form is a generalization of the original Lp-affi...

متن کامل

VOLUME INEQUALITIES FOR SUBSPACES OF Lp

A direct approach is used to establish both Ball and Barthe’s reverse isoperimetric inequalities for the unit balls of subspaces of Lp. This approach has the advantage that it completely settles all the open uniqueness questions for these inequalities. Affine isoperimetric inequalities generally have ellipsoids as extremals. The so called reverse affine isoperimetric inequalities usually have s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006